

VTL-E

Open cooling towers

Key benefits

- Low height
- Easy installation
- Quiet

VTL-E characteristics

Counter flow, centrifugal fan, forced draft

Capacity range

3 - 130 l/s

Water distribution

Pressurized

Maximum entering water temperature

55°C standard fill 65°C with alternative fill

Typical applications

- Small to medium HVAC and industrial applications
- Installations with extremely low height requirements
- Indoor installations
- High temperature industrial applications
- Tight enclosures & installations requiring a single air inlet

Low height

• Very low height: fits perfectly on roof tops or tight enclosures.

Easy installation

- VTL-E towers are factory-assembled. We ship in one piece for easy on-site lifting and installation.
- VTL-E offers high capacity and minimum operating weight. Save on steel supports, both underneath the
 equipment and in the building itself for rooftop installations.
- Single-side air inlet lets you install **next to solid walls**.
- Units housable **indoors** thanks to centrifugal fans allowing intake or discharge ductwork.

Ideal for a quiet operation

- VTL-E units include quiet internal centrifugal fans for minimal surrounding noise.
- Single-side air inlet, and a quieter tower rear for more noise-sensitive areas.
- Cut operation noise still further with factory-designed and tested <u>sound attenuators</u> or silencers.

Year-round reliable operation

- Various corrosion-resistant materials, including the unique <u>Baltibond hybrid coating</u> for guaranteed long service life.
- Optional <u>Baltiguard Drive System</u> for energy savings and less noise during low load (night). A perfect stand-by system in case of motor failure.
- The thermal performance of VTL-E is <u>Eurovent certified</u>.

Easy to maintain

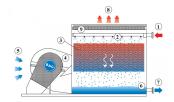
- Easy access to all the mechanicals, including fan shaft bearings.
- <u>BACount</u> individual bundled fill sheets for easy and complete inspection or cleaning preventing full replacement of fill bundles.

Interested in the VTL-E cooling tower for cooling your process water? Contact your local <u>BAC</u> representative for more information.

Downloads

- VTL-E open cooling tower
- Operating and Maintenance VTL-E
- Rigging and Installation VTL-E

- Spare Parts for VTL-E
- Retrofit Opportunities for VTL E



Principle of operation

Open cooling towers

Principle of operation

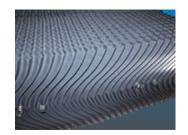
Warm process water (1) from the heat source enters the spray system (2) at the top of the cooling tower where it is distributed over the fill or heat transfer media (3). At the same time the centrifugal fan (4) blows ambient air (5) upwards through the tower. While the warm process water contacts the cold air the latter heats up and part of the process water is evaporated which removes the heat from the remaining water. The tower sump (6) or basin collects the cooled water (7) after which it returns to the heat source of the process. The warm saturated air (8) leaves the tower through the drift eliminators (9), which remove water droplets from the air.

Want to use the VTL-E cooling tower to cool your proces water? Contact your local <u>BAC representative</u> for more information.

Construction details

Open cooling towers

Construction details


1. Material options

- Heavy-gauge hot-dip galvanized steel is used for external unit steel panels and structural elements featuring <u>Baltiplus Corrosion</u> <u>Protection</u>.
- The unique <u>Baltibond hybrid coating</u> is an optional extra. A hybrid polymer coating for longer service life, applied pre-assembly to all hotdip galvanized steel components of the unit.
- Optional <u>stainless steel</u> panels and structural elements of type 304L or 316L for extreme applications.
- Or the economical alternative: a water-contact stainless steel cold water basin. Its key components and the basin itself are stainless steel. The rest is protected with the Baltibond hybrid coating.

2. Heat transfer media

- Our heat transfer media is patented <u>BACount fill</u>. Its thermal performance is proven during comprehensive <u>lab</u> thermal performance tests, and it offers you unrivalled system efficiency.
- We divide the fill pack into compact fill bundles easier to remove and replace. Each includes individual fill sheets which are easy to dismantle for thorough inspection and cleaning, hence eliminating the need for frequent fill replacement.
- In self-extinguishing plastic, which will not rot, decay or decompose.
- For operation above 55°C, try our **optional high temperature fill.** usable with intake water up to 65°C.

3. Air movement system

- With motor-driven centrifugal fan and a V-belt drive. You can easily remove the entire mo t o r base for proper belt tensioning to ensure constantly correct belt alignment. Together with the heavy duty fan shaft bearings this guarantees optimal operational efficiency. Singleand multi-speed motors available.
- Centrifugal fan(s) are forward-curved and nearly noiseless.
 Overcome external static pressure! Use sound attenuators and duct work etc. for air intake/discharge with no loss of thermal performance!
- Our drift eliminators come in UV-resistant plastic, which will not rot, decay or decompose and their performance is tested and certified by Eurovent. They are assembled in easily handled and removable sections, for optimal internal access.
- <u>Steel eliminators</u>, protected with the unique <u>Baltibond hybrid coating</u>, for optimal corrosion protection, are also available for specific applications.

These consist of:

- A header and spray branches with wide non-clog plastic nozzles, secured by rubber grommets. You can easily remove, clean and flush both nozzles and spray branches.
- A cold water basin with:
 - strainers which are easy to lift out and the anti-vortexing device also helps stop trapped air
 - mechanical make up
 - circular access door

Like to know more about the VTL-E construction details? Contact your <u>local BAC representative</u>.

Options and accessories

Open cooling towers

Options and accessories

Below is a listing of the main VTL-E options and accessories. If your required option or accessory is not listed, look no further than your <u>local BAC representative</u>.

Plume abatement coil

A finned discharge coil is installed in your cooling tower discharge and piped in series with the wet coil. This **reduces or eliminates plumes**.

Sound attenuation

Reducing noise at air intake and discharge points brings us closer to silent cooling equipment.

- The sound reductions obtained by HS sound attenuation arre perfect for residential sound requirements.
- Heavy noise reductions can be achieved with HD sound attenuation, making it ideal for rural requirements.

Baltiguard drive system

With this, operate your system like a dual-speed motor, but with standby reserve capacity **to cope with any failure**.

Basin heater package

Thanks to our factory-installed heaters, the water stays at 4°C and **never freezes**, even during tower downtime and however cold it gets outside.

Electric water level control package

For perfectly precise water level control, replace the standard mechanical valve with our electrical water level controller.

Remote sump connection

The best way to **prevent a sump freezing** is to use the auxiliary remote variety within a heated area. Shutting off the circulating pump allows all the water in the water distribution, as well as that in suspension and the sump to drain freely to the auxiliary sump.

Discharge hood

Discharge hoods **reduce the risk of re-circulation** in tight enclosures by increasing discharge air velocity, and can be used to elevate the unit discharge above adjacent walls to comply with layout guidelines.

Positive closure dampers

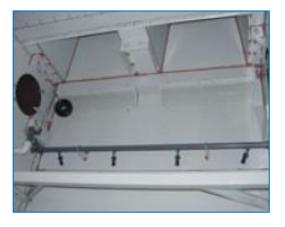
Use positive closure dampers (PCD) to minimize the heatloss due to convection by preventing air flow through equipment that is shut down.

Steel drift eliminators

Steel drift eliminators are more **robust** than plastic alternatives.

Safety switch

Cuts power to motors with safety in mind during inspection or maintenance.


Clean out port

Clean out port makes it easy to eliminate silt and sludge from the cooling tower basin when cleaning and flushing the sump.

Filter

Separators and media filters efficiently **remove suspended solids** in the recirculating water, reducing system cleaning costs and optimizing water treatment results. Filtration helps you keep the recirculating water clean.

Sump sweeper piping

Sump sweeper piping prevents sediment collecting in the cold water basin of the unit. A complete piping system, including nozzles, is installed in the basin of the tower for connection to side stream filtration equipment.

Water treatment equipment

Devices to control water treatment are needed to ensure proper **cooling tower water care**. Not only does this help protect the components and fill pack, controlling corrosion, scaling and fouling, it also avoids the proliferation of harmful bacteria, including **legionella**, in the recirculating water.

Flanges

Flanges facilitate piping connections on-site.

Special needs?

Open cooling towers

Special needs?

Our ongoing R&D investment helps BAC offer you a complete set of solutions for VTL-E cooling towers that meet your needs. Plus, we also cater for extra requirements such as:

Sound control

VTL-E uses a centrifugal fan in a V-design enclosure for better soundcontrol.

A quieter tower rear for more noise-sensitive areas.

Helping keep it near noiseless:

- Sound attenuators
- Baltiquard drive system

Plume control

Tap into abundant BAC plume control experience. For the VTL-E line, we offer <u>plume abatement coils</u> with <u>reduced plume</u>.

Check out our <u>BAC plume visualization software</u> for insight into **how**your cooling equipment will plume before installation. Helping you choose the best and most effective plume abatement solution.

Water savings

You need water for evaporative cooling. At BAC, however, we offer acclaimed and advanced water saving technologies. Helping in this aim are:

- Electric water level control package
- Water treatment equipment
- Sump sweeper piping
- Two-way valve control

BAC boasts a **complete water saving product range** for unrivalled water saving AND exceptional thermal efficiency, thanks to water saving technology. Hybrid wet/dry cooling towers are: <u>HXI</u>, <u>HFL</u>, <u>TrilliumSeries</u> coolers.

Energy saving

VTL-E uses evaporative cooling technology for lower operating temperatures than other cooling methods. With the following options, reduce energy costs still further:

- Baltiquard drive system
- Thermostat

Enhanced hygiene and water care

Water circulates in evaporative cooling towers and it is important to avoid excessive accumulation of dissolved solids. The following options help keep your cooling tower clean:

- Remote sump connection
- Water treatment equipment
- Sump sweeper piping
- Clean out port
- Filters

To control biological growth and scale formation, the water quality of the circulated water should be checked regularly. <u>Water quality guidelines</u> can be found in the <u>Knowledge center</u> of the website.

Year-round reliable operation

Inspect and maintain your cooling tower and protect it against extreme weather for year-round reliability. The options below help keep your cooling tower running smoothly and reliably and facilitate maintenance.

- Remote sump connection
- Water treatment equipment
- Sump sweeper piping
- Clean out port
- Filters
- Electric water level control package

Do you too want to benefit from the above solutions? Contact your <u>local BAC representative</u> for more information.

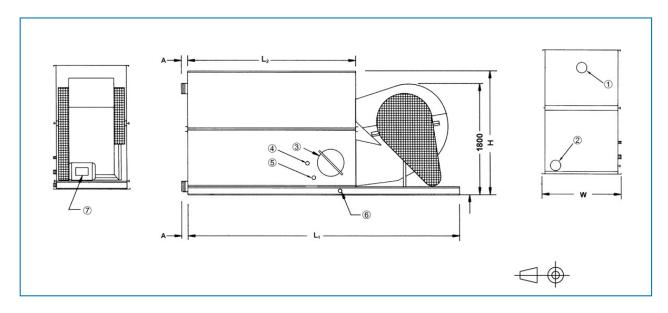
VTL-E 039G-137M

Open cooling towers

Engineering data

REMARK: Do not use for construction. Refer to factory certified dimensions & weights. This page includes data current at the time of publication, which should be reconfirmed at the time of purchase. In the interest of the product improvement, specifications, weights and dimensions are subject to change without notice.

General notes


- 1. All connections 100 mm and smaller are MPT. Connections 200 mm and larger than 100 mm are bevelled-for-welding.
- 2. Fan kW is at 0 Pa ESP. To operate against external static pressure up to 125 Pa, consult your BAC representative for size and location.
- 3. Make up, overflow, suction, drain connections and access door can be provided on side opposite to that shown, consult your BAC representative.
- 4. Unit height is indicative, for precise value refer to certified print.
- 5. Shipping/operating weights indicated are for units without accessories such as sound attenuators, discharge hoods, etc. Consult factory certified prints to obtain weight additions and the heaviest section to be lifted.

VTL-E cooling tower performance at standard conditions

Last update: 01/06/2023

VTL-E 039G-137M

1. Water Inlet; 2. Water Outlet; 3. Acces Door; 4. Make up ND25; 5. Overflow ND50; 6. Drain ND50; 7. Fan Motor. Overflow connection is 80 mm on models VTL-E 086L, VTL-E 094M and VTL-E 103K through VTL-E 137M.

Model		Weights (kg)			Dimensi			Air Flow	Fan	Fluid	Fluid	Make Up
	Oper. Weight (kg)	Ship. Weight(k g)	Heaviest Section (kg)	L1	L2	W	н	(m³/s)	Motor (kW)	Inlet ND (mm)	Outlet ND (mm)	ND (mm)
VTL-	1200	720	720	3350	1820	1250	1560	7.0	(1x)	(1x)	(1x)	(1x)
E									2.2	100	100	25
039-G												
VTL-	1230	750	750	3350	1820	1250	1560	8.0	(1x)	(1x)	(1x)	(1x)
E									4.0	100	100	25
045-H												
VTL-	1279	799	799	3350	1820	1250	1990	6.3	(1x)	(1x)	(1x)	(1x)
E									2.2	100	100	25
051-G												
VTL-	1290	810	810	3350	1820	1250	1990	7.3	(1x)	(1x)	(1x)	(1x)
E									4.0	100	100	25
059-H												
VTL-	1320	840	840	3350	1820	1250	1990	8.1	(1x)	(1x)	(1x)	(1x)
Е									5.5	100	100	25
066-J												
VTL-	1330	850	850	3350	1820	1250	1990	8.8	(1x)	(1x)	(1x)	(1x)
E									7.5	100	100	25
072-K												
VTL-	1369	889	889	3350	1820	1250	2480	5.632	(1x)	(1x)	(1x)	(1x)
E									2.2	100	100	25
056-G												
VTL-	1380	900	900	3350	1820	1250	2480	6.625	(1x)	(1x)	(1x)	(1x)
E								5.525	4.0	100	100	25
_ 065-Н											''	-
VTL-	1401	921	921	3350	1820	1250	2480	7.537	(1x)	(1x)	(1x)	(1x)
E	1.40.	02.	021		1020	1200		1.001	5.5	100	100	25
073-J									0.5	100	100	20
VTL-	1410	930	930	3350	1820	1250	2480	8.3	(1x)	(1x)	(1x)	(1x)
E	14.0				1020	1200		0.0	7.5	100	100	25
079-K									'.5	100	100	20
VTL-	1688	978	978	4560	2730	1250	1990	7.149	(1x)	(1x)	(1x)	(1x)
E		0.0	0.0						2.2	150	150	25
058-G										100	100	-
VTL-	1699	989	989	4560	2730	1250	1990	8.48	(1x)	(1x)	(1x)	(1x)
E	1000			1000		1200	1000	0.40	4.0	150	150	25
об7-H									1.0	100	100	-
VTL-	1720	1010	1010	4560	2730	1250	1990	9.7	(1x)	(1x)	(1x)	(1x)
E	1120	1010	1010	4500	2750	1230	1330	J.,	5.5	150	150	25
076-J									0.0	100	100	-
VTL-	1740	1030	1030	4560	2730	1250	1990	10.6	(1x)	(1x)	(1x)	(1x)
E	1740	1000	1000	4500	2750	1230	1330	10.0	7.5	150	150	25
082-K									'	100	100	-
VTL-	1773	1063	1063	4560	2730	1250	1990	11.78	(1x)	(1x)	(1x)	(1x)
E E	1113	1003	1003	4500	2/30	1230	1990	9	11.0	150	150	25
092-L									' ' ' '	130	130	23
VTL-	1809	1099	1099	4560	2730	1250	2480	6.647	(1x)	(1x)	(1x)	(1x)
E E	1009	1099	1099	4500	2/30	1230	2400	0.047	2.2	150	150	25
066-G									2.2	130	130	25
VTL-	1920	1110	1110	4560	2720	1250	2480	8.007	(1)	(4)	(1)	(4)
VIL-	1820	1110	1110	4560	2730	1250	2400	0.007	(1x) 4.0	(1x)	(1x) 150	(1x)
									4.0	150	100	25
078-H	4044	4404	4404	4500	2720	4250	2400	0.400	(4)	(4)	(4)	(4)
VTL-	1841	1131	1131	4560	2730	1250	2480	9.109	(1x)	(1x)	(1x)	(1x)
E									5.5	150	150	25
088-J VTL-	46-5	44:5	44.5	4=		10	0.00	40.5		100	14.	
	1850	1140	1140	4560	2730	1250	2480	10.0	(1x)	(1x)	(1x)	(1x)

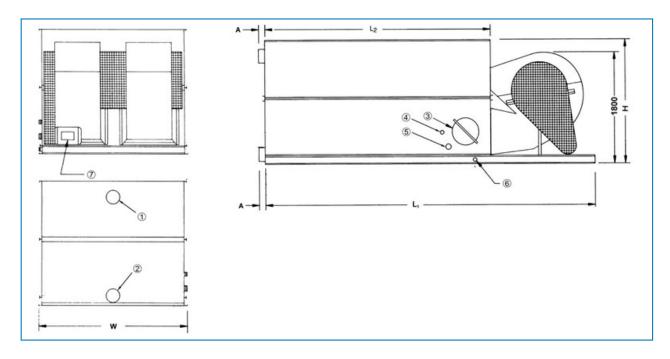
E 095-K									7.5	150	150	25
VTL- E	1883	1173	1173	4560	2730	1250	2480	11.36	(1x) 11.0	(1x) 150	(1x) 150	(1x) 25
107-L VTL-	1903	1193	1193	4560	2730	1250	2480	12.59	(1x)	(1x)	(1x)	(1x)
E 117-M								6	15.0	150	150	25
VTL- E 070-J	2008	1078	1078	5480	3650	1250	1560	11.11	(1x) 5.5	(1x) 150	(1x) 150	(1x) 25
VTL- E 077-K	2017	1087	1087	5480	3650	1250	1560	12.32	(1x) 7.5	(1x) 150	(1x) 150	(1x) 25
VTL- E 086-L	2050	1120	1120	5480	3650	1250	1560	14.0	(1x) 11.0	(1x) 150	(1x) 150	(1x) 25
VTL- E 094-M	2060	1130	1130	5480	3650	1250	1560	15.4	(1x) 15.0	(1x) 150	(1x) 150	(1x) 25
VTL- E 094-J	2141	1211	1211	5480	3650	1250	1990	10.76 3	(1x) 5.5	(1x) 150	(1x) 150	(1x) 25
VTL- E 103-K	2150	1220	1220	5480	3650	1250	1990	11.8	(1x) 7.5	(1x) 150	(1x) 150	(1x) 25
VTL- E 116-L	2180	1250	1250	5480	3650	1250	1990	13.3	(1x) 11.0	(1x) 150	(1x) 150	(1x) 25
VTL- E 126-M	2190	1260	1260	5480	3650	1250	1990	14.5	(1x) 15.0	(1x) 150	(1x) 150	(1x) 25
VTL- E 102-J	2278	1348	1348	5480	3650	1250	2480	10.21	(1x) 5.5	(1x) 150	(1x) 150	(1x) 25
VTL- E 111-K	2287	1357	1357	5480	3650	1250	2480	11.19 1	(1x) 7.5	(1x) 150	(1x) 150	(1x) 25
VTL- E 126-L	2320	1390	1390	5480	3650	1250	2480	12.8	(1x) 11.0	(1x) 150	(1x) 150	(1x) 25
VTL- E 137-M	2330	1400	1400	5480	3650	1250	2480	13.6	(1x) 15.0	(1x) 150	(1x) 150	(1x) 25

VTL-E 113J-272P

Open cooling towers

Engineering data

REMARK: Do not use for construction. Refer to factory certified dimensions & weights. This page includes data current at the time of publication, which should be reconfirmed at the time of purchase. In the interest of the product improvement, specifications, weights and dimensions are subject to change without notice.


General notes

- 1. All connections 100 mm and smaller are MPT. Connections 200 mm and larger than 100 mm are bevelled-for-welding.
- 2. Fan kW is at 0 Pa ESP. To operate against external static pressure up to 125 Pa, consult your BAC representative for size and location.
- 3. Make up, overflow, suction, drain connections and access door can be provided on side opposite to that shown, consult your BAC representative.
- 4. Unit height is indicative, for precise value refer to certified print.
- 5. Shipping/operating weights indicated are for units without accessories such as sound attenuators, discharge hoods, etc. Consult factory certified prints to obtain weight additions and the heaviest section to be lifted.

VTL-E cooling tower performance at standard conditions

Last update: 01/06/2023

VTL-E 113J-272P

1. Water Inlet; 2. Water Outlet; 3. Access Door; 4. Make up; 5. Overflow ND80; 6. Drain ND50; 7. Fan Motor.

Model		Weights (kg)			Dimension			Air Flow	Fan	Fluid	Fluid	Make Up
	Oper. Weight	Ship. Weight(k	Heaviest Section	L1	L2	W	Н	(m³/s)	Motor (kW)	Inlet ND (mm)	Outlet ND (mm)	ND (mm)
VTL-	(kg) 2958	g) 1518	(kg) 1518	4560	2730	2400	1560	15.79	(1x)	(1x)	(1x)	(1x)
E								8	5.5	200	200	40
113-J VTL-	2967	1527	1527	4560	2730	2400	1560	17.51	(1×)	(1)	(1x)	(4x)
E E	2907	1527	1521	4560	2/30	2400	1560	7	(1x) 7.5	(1x) 200	200	(1x) 40
124-K												
VTL-	3000	1560	1560	4560	2730	2400	1560	19.9	(1x)	(1x)	(1x)	(1x)
E 139-L									11.0	200	200	40
VTL-	3010	1570	1570	4560	2730	2400	1560	21.6	(1x)	(1x)	(1x)	(1x)
E									15.0	200	200	40
152-M	2040	4600	1609	4500	2720	2400	4500	23.24	(4)	(4)	(4)	(4)
VTL- E	3049	1609	1609	4560	2730	2400	1560	23.24	(1x) 18.5	(1x) 200	(1x) 200	(1x) 40
162-N										-00	-00	.•
VTL-	3058	1628	1628	4560	2730	2400	1990	14.92	(1x)	(1x)	(1x)	(1x)
E 139-J								5	5.5	200	200	40
VTL-	3067	1637	1637	4560	2730	2400	1990	16.54	(1x)	(1x)	(1x)	(1x)
E								9	7.5	200	200	40
152-K		1										<u> </u>
VTL- E	3071	1631	1631	4560	2730	2400	1560	24.62	(1x)	(1x)	(1x)	(1x)
171-O									22.0	200	200	40
VTL-	3100	1670	1670	4560	2730	2400	1990	18.8	(1x)	(1x)	(1x)	(1x)
E									11.0	200	200	40
171-L VTL-	3170	1740	1740	4560	2730	2400	1990	20.4	(4×)	(4)	(4)	(4)
VIL-	3170	1740	1740	4560	2/30	2400	1990	20.4	(1x) 15.0	(1x) 200	(1x) 200	(1x) 40
185-M									10.0	-00	-00	.•
VTL-	3190	1760	1760	4560	2730	2400	1990	21.8	(1x)	(1x)	(1x)	(1x)
E									18.5	200	200	40
198-N VTL-	3200	1770	1770	4560	2730	2400	1990	23.0	(1x)	(1x)	(1x)	(1x)
E	5255	•	•						22.0	200	200	40
209-O												ļ
VTL- E	3279	1849	1849	4560	2730	2400	2480	13.88	(1x)	(1x)	(1x)	(1x)
149-J								•	5.5	200	200	40
VTL-	3288	1858	1858	4560	2730	2400	2480	15.39	(1x)	(1x)	(1x)	(1x)
E								9	7.5	200	200	40
164-K	2224	4004	4004	4500	2720	2400	2490	47.60	(4)	(4)	(4)	(4)
VTL- E	3321	1891	1891	4560	2730	2400	2480	17.62 3	(1x) 11.0	(1x) 200	(1x) 200	(1x) 40
186-L												
VTL-	3341	1911	1911	4560	2730	2400	2480	19.31	(1x)	(1x)	(1x)	(1x)
E 201 M								2	15.0	200	200	40
201-M VTL-	3380	1950	1950	4560	2730	2400	2480	20.8	(1x)	(1x)	(1x)	(1x)
E							00		18.5	200	200	40
215-N												
VTL-	3400	1970	1970	4560	2730	2400	2480	22.0	(1x)	(1x)	(1x)	(1x)
E 227-O									22.0	200	200	40
VTL-	3919	1999	1999	5480	3650	2400	1990	20.24	(1x)	(1x)	(1x)	(1x)

E								4	11.0	200	200	40
183-L												
VTL-	3939	2019	2019	5480	3650	2400	1990	22.28	(1x)	(1x)	(1x)	(1x)
Е									15.0	200	200	40
200-M												
VTL-	3978	2058	2058	5480	3650	2400	1990	23.90	(1x)	(1x)	(1x)	(1x)
E								6	18.5	200	200	40
214-N												
VTL-	4000	2080	2080	5480	3650	2400	1990	25.5	(1x)	(1x)	(1x)	(1x)
E									22.0	200	200	40
225-O												
VTL-	4051	2151	2151	5480	3650	2400	2480	19.68	(1x)	(1x)	(1x)	(1x)
E									11.0	200	200	40
204-L												
VTL-	4071	2171	2171	5480	3650	2400	2480	21.48	(1x)	(1x)	(1x)	(1x)
Е								9	15.Ó	200	200	40
222-M												
VTL-	4080	2180	2180	5480	3650	2400	1990	27.8	(1x)	(1x)	(1x)	(1x)
Е									30.ó	200	200	40
245-P												''
VTL-	4110	2210	2210	5480	3650	2400	2480	23.4	(1x)	(1x)	(1x)	(1x)
Е									18.5	200	200	40
238-N												''
VTL-	4274	2374	2374	5480	3650	2400	2480	24.44	(1x)	(1x)	(1x)	(1x)
E								6	22.0	200	200	40
250-O								1	==	-70	=30	"
VTL-	4310	2410	2410	5480	3650	2400	2480	26.8	(1x)	(1x)	(1x)	(1x)
E				0.00			55	-0.0	30.0	200	200	40
272-P									30.0		200	70
414T												

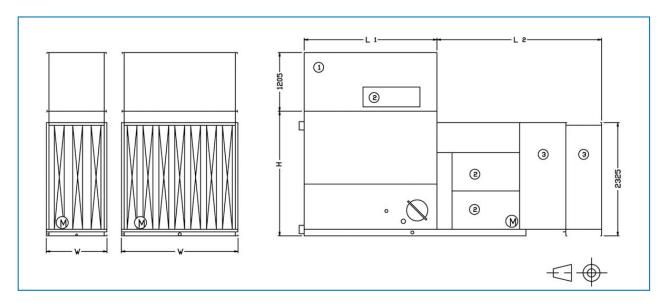
Sound attenuation HD

Open cooling towers

Engineering data

REMARK: Do not use for construction. Refer to factory certified dimensions & weights. This page includes data current at the time of publication, which should be reconfirmed at the time of purchase. In the interest of the product improvement, specifications, weights and dimensions are subject to change without notice.

General notes


- 1. All connections 100 mm and smaller are MPT. Connections 200 mm and larger than 100 mm are bevelled-for-welding.
- 2. Fan kW is at 0 Pa ESP. To operate against external static pressure up to 125 Pa, consult your BAC representative for size and location.
- 3. Make up, overflow, suction, drain connections and access door can be provided on side opposite to that shown, consult your BAC representative.
- 4. Unit height is indicative, for precise value refer to certified print.
- 5. Shipping/operating weights indicated are for units without accessories such as sound attenuators, discharge hoods, etc. Consult factory certified prints to obtain weight additions and the heaviest section to be lifted.

VTL-E cooling tower performance at standard conditions

Last update: 01/06/2023

Sound attenuation HD

1. Discharge attenuator; 2. Access Door; 3. Intake attenuator; H & W: unit height and width (see engineering data).

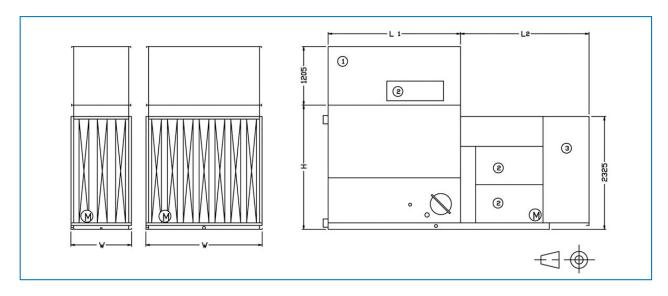
Model	Dimensio	ns (mm)	Weights (kg)					
	L2	L	Intake	Discharge	Total			
VTL-E 039 G - 079 K	3125	1820	655	235	890			
VTL-E 076 J - 095 K	3375	2730	660	315	975			
VTL-E 086 L - 137 M	3375	3650	660	385	1045			
VTL-E 139 L - 227 O	3375	2730	980	500	1480			
VTL-E 225 O - 272 P	3375	3650	980	605	1585			

Sound attenuation HS

Open cooling towers

Engineering data

REMARK: Do not use for construction. Refer to factory certified dimensions & weights. This page includes data current at the time of publication, which should be reconfirmed at the time of purchase. In the interest of the product improvement, specifications, weights and dimensions are subject to change without notice.


General notes

- 1. All connections 100 mm and smaller are MPT. Connections 200 mm and larger than 100 mm are bevelled-for-welding.
- 2. Fan kW is at 0 Pa ESP. To operate against external static pressure up to 125 Pa, consult your BAC representative for size and location.
- 3. Make up, overflow, suction, drain connections and access door can be provided on side opposite to that shown, consult your BAC representative.
- 4. Unit height is indicative, for precise value refer to certified print.
- 5. Shipping/operating weights indicated are for units without accessories such as sound attenuators, discharge hoods, etc. Consult factory certified prints to obtain weight additions and the heaviest section to be lifted.

VTL-E cooling tower performance at standard conditions

Last update: 01/06/2023

Sound attenuation HS

1. Discharge attenuator; 2. Access Door; 3. Intake attenuator; H & W: unit height and width (see engineering data).

Model	Dimensio	ns (mm)	Weights (kg)					
	L2	L	Intake	Discharge	Total			
VTL-E 039 G - 079 K	2390	1820	460	215	675			
VTL-E 076 J - 095 K	2640	2730	465	295	760			
VTL-E 086 L - 137 M	2640	3650	465	365	830			
VTL-E 139 L - 227 O	2640	2730	665	465	1130			
VTL-E 225 O - 272 P	2640	3650	665	565	1230			

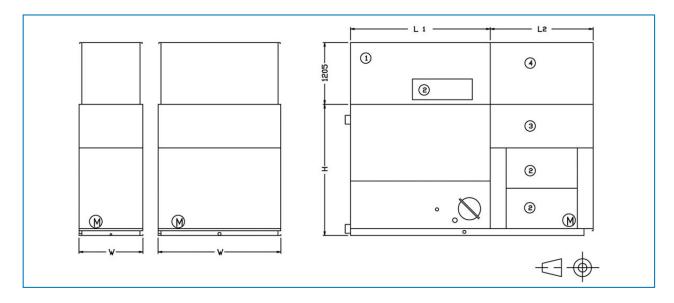
Sound attenuation VS

Open cooling towers

Engineering data

REMARK: Do not use for construction. Refer to factory certified dimensions & weights. This page includes data current at the time of publication, which should be reconfirmed at the time of purchase. In the interest of the product improvement, specifications, weights and dimensions are subject to change without notice.

General notes


- 1. All connections 100 mm and smaller are MPT. Connections 200 mm and larger than 100 mm are bevelled-for-welding.
- 2. Fan kW is at 0 Pa ESP. To operate against external static pressure up to 125 Pa, consult your BAC representative for size and location.
- 3. Make up, overflow, suction, drain connections and access door can be provided on side opposite to that shown, consult your BAC representative.
- 4. Unit height is indicative, for precise value refer to certified print.
- 5. Shipping/operating weights indicated are for units without accessories such as sound attenuators, discharge hoods, etc. Consult factory certified prints to obtain weight additions and the heaviest section to be lifted.

VTL-E cooling tower performance at standard conditions

Last update: 01/06/2023

Sound attenuation VS

1. Discharge attenuator; 2. Access Door; 3. Intake attenuator; 4. Plenum; H & W: unit height and weight (see engineering data).

Model	Dimensio	ns (mm)	Weights (kg)					
	L2	L	Intake	Discharge	Total			
VTL-E 039 G - 079 K	2010	1820	N.A.	N.A.	725			
VTL-E 076 J - 095 K	2010	2730	N.A.	N.A.	830			
VTL-E 086 L - 137 M	2010	3650	N.A.	N.A.	915			
VTL-E 139 L - 227 O	2010	2730	N.A.	N.A.	1205			
VTL-E 225 O - 272 P	2010	3650	N.A.	N.A.	1310			